这是高等电磁场理论的第三篇文章
本文将介绍电磁场中的矢量位及标量位,并求得自由空间中矢量位的解;本文涉及并矢,(自由空间)格林函数,辅助位函数等概念
自由空间为介电常数为\(\epsilon\),磁导率为\(\mu\)的无限大均匀媒质,这是实际中最简单的情况
从本文开始,将开始涉及电磁波的传播,下篇文章将给出几个自由空间辐射问题的案例
矢量位和标量位
静态场
时谐场的Maxwell's equations为 \[\begin{aligned} \nabla\times\vec{E}&=-j\omega\mu\vec{H}-\vec{M} \\[8pt] \nabla\times\vec{H}&=j\omega\epsilon\vec{E}+\vec{J} \\[8pt] \nabla\cdot(\epsilon\vec{E})&=\rho_e \\[8pt] \nabla\cdot(\mu\vec{H})&=\rho_m \end{aligned} \]
当频率\(\omega\rightarrow0\)时 \[\begin{aligned} \nabla\times\vec{E}&=-\vec{M} \\[8pt] \nabla\times\vec{H}&=\vec{J} \\[8pt] \nabla\cdot(\epsilon\vec{E})&=\rho_e \\[8pt] \nabla\cdot(\mu\vec{H})&=\rho_m \end{aligned} \]
此时电场和磁场解耦,该情况即为静态场
当磁流为零时 \[\nabla\times\vec{E}=0\qquad\nabla\cdot(\epsilon\vec{E})=\rho_e\]
由Helmholtz定理,可构造标量电位/标量电势\(\phi\),满足 \[\vec{E}=-\nabla\phi\]
带入上式可得 \[-\nabla\cdot(\epsilon\nabla\phi)=\rho_e\quad\Rightarrow\quad\nabla^2\phi=-\frac{\rho_e}{\epsilon}\]
此即为泊松方程(Poisson's Equation) 在无限大均匀媒质中,泊松方程的解为 \[\phi(\vec{r})=\frac{1}{4\pi\epsilon}\iiint_V\frac{\rho_e(\vec{r})}{R}dV' \qquad R=|\vec{r}-\vec{r'}|\]
求解过程将于自由空间格林函数部分讲述
当磁荷为零时 \[\nabla\times\vec{H}=\vec{J}\qquad\nabla\cdot(\mu\vec{H})=0\]
由Helmholtz定理,可构造矢量磁位\(\vec{A}\),满足 \[\vec{B}=\nabla\times\vec{A}\]
代入上式可得 \[\nabla\times(\frac{1}{\mu}\nabla\times\vec{A})=\vec{J}\quad\Rightarrow\quad\nabla\times(\nabla\times\vec{A})=\nabla(\nabla\cdot\vec{A})-\nabla^2\vec{A}=\mu\vec{J}\]
由于矢量磁位\(\vec{A}\)需要由散度和旋度表征(Helmholtz定理),其旋度即为磁感应强度\(\vec{B}\),因此需要对其散度进行约束,这便是库伦规范(Coulomb gauge),即 \[\nabla\cdot\vec{A}=0\]
由此可得矢量泊松方程 \[\nabla^2\vec{A}=-\mu\vec{J}\]
在无限大均匀媒质中,矢量泊松方程的解为 \[\vec{A}(\vec{r})=\frac{\mu}{4\pi}\iiint_V\frac{\vec{J}(\vec{r})}{R}dV' \qquad R=|\vec{r}-\vec{r'}|\]
库伦规范的引入并不会影响磁场解,这是因为即使\(\vec{A}\)不是唯一的,由\(\vec{B}=\nabla\times\vec{A}\)得到的磁感应强度并无变化,而规范可以让方程变得更简单
时谐场
Maxwell's equations为线性方程组,满足叠加原理,因此可以将电场和磁场分解为电流源和磁流源产生的场,即 \[\vec{E}=\vec{E}_e+\vec{E}_m\qquad\vec{H}=\vec{H}_e+\vec{H}_m\]
对\(\vec{E}_e\)和\(\vec{H}_e\): \[\begin{cases} \nabla\times\vec{E}_e=-j\omega\mu\vec{H}_e\qquad\nabla\cdot(\epsilon\vec{E}_e)=\rho_e \\[8pt] \nabla\times\vec{H}_e=j\omega\mu\vec{E}_e+\vec{J}\qquad\nabla\cdot(\mu\vec{H}_e)=0 \end{cases}\]
对\(\vec{E}_m\)和\(\vec{H}_m\): \[\begin{cases} \nabla\times\vec{E}_m=-j\omega\mu\vec{H}_m-\vec{M}\qquad\nabla\cdot(\epsilon\vec{E}_m)=0 \\[8pt] \nabla\times\vec{H}_m=j\omega\mu\vec{E}_m\qquad\nabla\cdot(\mu\vec{H}_m)=\rho_m \end{cases}\]
由于\(\vec{B}_e=\mu\vec{H}_e\)无散,故引入矢量磁位 \[\vec{B}_e=\nabla\times\vec{A}\]
代入\(\nabla\times\vec{E}_e=-j\omega\mu\vec{H}_e\)可得 \[\nabla\times(\vec{E}_e+j\omega\vec{A})=0\]
由Helmholtz定理,引入标量电位\(\phi\)满足 \[\vec{E}_e+j\omega\vec{A}=-\nabla\phi\]
代入\(\nabla\times\vec{H}_e=j\omega\epsilon\vec{E}_e+\vec{J}\)可得 \[\nabla\times(\frac{1}{\mu}\nabla\times\vec{A})=-j\omega\epsilon\nabla\phi+\omega^2\epsilon\vec{A}+\vec{J} \\[8pt] \Rightarrow \nabla(\nabla\cdot\vec{A})-\nabla^2\vec{A}=-j\omega\mu\epsilon\nabla\phi+k^2\vec{A}+\mu\vec{J} \qquad k^2=\omega^2\mu\epsilon\]
参考静态场,由于矢量磁位的散度不影响磁场的解,为了简化运算引入洛伦兹规范(Lorenz Gauge),而洛伦兹规范便于处理推迟势和推迟矢势问题,且该规范具有洛伦兹不变性;洛伦兹规范为 \[\nabla\cdot\vec{A}=-j\omega\mu\epsilon\phi\]
代入上式可得矢量亥姆霍兹方程(Helmholtz Equation),亦称达朗贝尔方程(d'Alembert equation) \[\nabla^2\vec{A}+k^2\vec{A}=-\mu\vec{J}\]
确定\(\vec{A}\)后即可计算\(\vec{E}_e\)和\(\vec{H}_e\) \[\begin{cases} \vec{E}_e=-j\omega\vec{A}+\frac{1}{j\omega\mu\epsilon}\nabla(\nabla\cdot\vec{A}) \\[8pt] \vec{H}_e=\frac{1}{\mu}\nabla\times\vec{A} \end{cases}\]
对\(\vec{E}_e+j\omega\vec{A}=-\nabla\phi\)两边取散度可得标量亥姆霍兹方程(Helmholtz Equation),亦称达朗贝尔方程(d'Alembert equation) \[\nabla^2\phi+k^2\phi=-\frac{\rho_e}{\epsilon}\]
同理,对磁流源产生的场,引入矢量电位\(\vec{F}\),其满足矢量亥姆霍兹方程 \[\nabla^2\vec{F}+k^2\vec{F}=-\epsilon\vec{M}\]
则磁流源产生的场可表示为 \[\begin{cases} \vec{E}_m=-\frac{1}{\epsilon}\nabla\times\vec{F} \\[8pt] \vec{H}_m=-j\omega\vec{F}+\frac{1}{j\omega\mu\epsilon}\nabla(\nabla\cdot\vec{F}) \end{cases}\]
可以看出磁流源产生的场和电流源产生的场形式上具有对称性,实际上可以由对偶原理(后续讲述)得到,这是经典电磁场的对称性所决定的
实际上,借助前文求得的\(\vec{A}\)和\(\vec{F}\)即可得到总场的表达式,且\(\vec{A}\)和\(\vec{F}\)均满足矢量亥姆霍兹方程 \[\begin{aligned} \vec{E}&=-j\omega\vec{A}+\frac{1}{j\omega\mu\epsilon}\nabla(\nabla\cdot\vec{A})-\frac{1}{\epsilon}\nabla\times\vec{F} \\[8pt] \vec{H}&=\frac{1}{\mu}\nabla\times\vec{A}-j\omega\vec{F}+\frac{1}{j\omega\mu\epsilon}\nabla(\nabla\cdot\vec{F}) \end{aligned}\]
此式表明,总场可由矢量位唯一确定且完全表示,这是一个十分优美的结论,在后续章节中也将经常用到此式
自由空间中矢量位的解
格林函数
在物理中,需要对点源和其所产生场之间的关系进行描述,格林函数便是用于描述这种关系. 借助格林函数,点源与空间场分布之间的关系可被表示为 \[u(x)=\int_{-\infty}^{\infty}\phi(\xi)G(\xi,x)d\xi\]
其中,\(G(\xi,x)\)为格林函数,表示\(\xi\)域的点源在\(x\)域产生的场分布;\(\phi(\xi)\)为\(\xi\)域的源分布函数;该式为解的积分公式,这是对线性系统应用叠加原理的结果. 显然,对已知分布的点源,若得到格林函数即可得到点源所产生的场
下面将展示利用格林函数求解泊松方程\(\nabla^2\phi=-\frac{\rho_e(\vec{r})}{\epsilon}\),在求解之前需要先介绍狄拉克函数(\(\delta\)函数),其可用于描述点电荷的分布
\(\delta\)函数的定义式为 \[\delta(\vec{r}-\vec{r'})=\begin{aligned} {\begin{cases} \infty&\quad\vec{r}=\vec{r'} \\[8pt] 0&\quad\vec{r}\neq\vec{r'} \end{cases}} \end{aligned} \\[8pt] \iiint_V\delta(\vec{r}-\vec{r'})dV=\begin{aligned} {\begin{cases} 1&\quad\vec{r'}在V中 \\[8pt] 0&\quad\vec{r'}不在V中 \end{cases}} \end{aligned}\]
给定任意在\(\vec{r'}\)连续函数,其源函数\(f(\vec{r'})\)可视为无数点源函数\(\delta(\vec{r}-\vec{r'})\)的叠加,即 \[\iiint_Vf(\vec{r})\delta(\vec{r}-\vec{r'})=\begin{aligned} {\begin{cases} f(\vec{r'})&\quad\vec{r'}在V中 \\[8pt] 0&\quad\vec{r'}不在V中 \end{cases}} \end{aligned}\]
\(\delta\)函数为符号函数(广义函数),其具有对称性 \[\delta(x-x')=\delta(x'-x)\]
在笛卡尔坐标系,柱坐标系和球坐标系中,三维\(\delta\)函数与一维\(\delta\)函数的关系为 \[\begin{aligned} \delta(\vec{r}-\vec{r'})&=\delta(x-x')\delta(y-y')\delta(z-z') \\[8pt ]\delta(\vec{r}-\vec{r'})&=\frac{1}{\rho}\delta(\rho-\rho')\delta(\phi-\phi')\delta(z-z') \\[8pt ]\delta(\vec{r}-\vec{r'})&=\frac{1}{r^2\sin\theta}\delta(r-r')\delta(\theta-\theta')\delta(\phi-\phi') \end{aligned}\]
下面基于格林函数和傅里叶变换求解自由电荷的泊松方程 对位于\(\vec{r_0}\)的单位点电荷,电荷密度\(\rho(\vec{r})=\delta(\vec{r}-\vec{r_0})\),则其满足下述泊松方程,方程的解为单位点电荷形成的电势(不妨令\(\vec{r_0}=0\)) \[\nabla^2u=-\frac{\delta(\vec{r}-\vec{r'})}{\epsilon} \\[8pt] \Rightarrow \frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}=-\frac{\delta(x)\delta(y)\delta(z)}{\epsilon}\]
上式两边做傅里叶变换,得 \[-(\omega_x^2+\omega_y^2+\omega_z^2)U(\omega_x,\omega_y,\omega_z)=-\frac{1}{\epsilon} \\[8pt] \Rightarrow U(\omega_x,\omega_y,\omega_z)=\frac{1}{\epsilon\omega^2} \\[8pt]\]
在球坐标系中计算,将\(\vec{r}\)取为极轴方向 \[\begin{aligned} u(x,y,z)&=\mathrm{F}^{-1}[U(\omega_x,\omega_y,\omega_z)] \\[8pt] &=\frac{1}{(2\pi)^3}\iiint_{\infty}Ue^{j(\omega_xx+\omega_yy+\omega_zz)}d\omega \\[8pt] &=\frac{1}{(2\pi)^3\epsilon}\iiint_{\infty}\frac{e^{j\vec{\omega}\cdot\vec{r}}}{\omega^2}d\omega \\[8pt] &=\frac{1}{(2\pi)^3\epsilon}\int_0^{\infty}\int_0^\pi\int_0^{2\pi}\frac{e^{j\omega r\cos\theta}}{\omega^2}\omega^2\sin\theta d\omega d\theta d\phi \\[8pt] &=\frac{1}{4\pi\epsilon r} \end{aligned} \]
故单位点电荷的格林函数为 \[G(\vec{r},0)=\frac{1}{4\pi\epsilon r}\quad\Rightarrow\quad G(\vec{r},\vec{r_0})=\frac{1}{4\pi\epsilon|\vec{r}-\vec{r_0}|}\]
故对密度为\(\rho(\vec{r_0})\)的电荷分布,其泊松方程的解为 \[u(\vec{r})=\frac{1}{4\pi\epsilon}\iiint_\infty\frac{\rho(\vec{r'})}{|\vec{r}-\vec{r'}|}d\vec{r'}\]
自由空间格林函数
引入格林函数和\(\delta\)函数后,由于矢量磁位\(\vec{A}\)和矢量电位\(\vec{F}\)满足的矢量亥姆霍兹方程为线性方程,故其可表示为点源解的叠加,即 \[\begin{aligned} \vec{A}(\vec{r})&=\mu\iiint_V\vec{J}(\vec{r'})G(\vec{r},\vec{r'})dV' \\[8pt] \vec{F}(\vec{r})&=\epsilon\iiint_V\vec{M}(\vec{r'})G(\vec{r},\vec{r'})dV' \end{aligned}\]
\(\vec{A}\)与\(\vec{F}\)满足的格林函数相同,这是由矢量亥姆霍兹方程的对称性,或者说是电场和磁场的对偶性决定的
以矢量电位\(\vec{A}\)为例,将上式带入矢量亥姆霍兹方程,且电流源由点源叠加表示,则 \[\iiint_V[\nabla^2G(\vec{r},\vec{r'})+k^2G(\vec{r},\vec{r'})]\vec{J}(\vec{r'})dV'=-\iiint_V\delta(\vec{r}-\vec{r'})\vec{J}(\vec{r'})dV' \\[8pt] \Rightarrow \nabla^2G(\vec{r}-\vec{r'})+k^2G(\vec{r}-\vec{r'})=-\delta(\vec{r}-\vec{r'})\]
此为\(\vec{A}\)和\(\vec{F}\)满足的格林函数,根据媒质的分布可求得特地条件下的格林函数
在自由空间中,记格林函数为\(G_0(\vec{r},\vec{r'})\),不妨令\(\vec{r'}=0\),由于\(G_0(\vec{r},0)\)对坐标原点球对称,则上式可写为 \[\frac{1}{r^2}\frac{d}{dr}[r^2\frac{dG_0(\vec{r},0)}{dr}]+k^2G_0(\vec{r},0)=-\delta(\vec{r})\]
当\(\vec{r}\neq0\)时 \[\frac{d^2[rG_0(\vec{r},0)]}{dr^2}+k^2[rG_0(\vec{r},0)]=0\]
该方程两个独立解为\(rG_0(\vec{r},0)=Ce^{\pm jkr}\),只有由点源向外传播的波具有物理意义,即 \[G_0(\vec{r},0)=C\frac{e^{-jkr}}{r}\]
代入微分形式的矢量亥姆霍兹方程中,在以\(\vec{r}=0\)为中心的小球上进行体积分,令小球半径\(\epsilon\rightarrow0\),可得\(C=\frac{1}{4\pi}\),故 \[G_0(\vec{r},0)=\frac{e^{-jkr}}{4\pi r}\]
一般情况下,自由空间的标量格林函数表示从\(\vec{r'}\)发出的向外传播的球面波,其形式为 \[G_0(\vec{r},\vec{r'})=\frac{e^{-jk|\vec{r}-\vec{r'}|}}{4\pi|\vec{r}-\vec{r'}|}\]
自由空间中的场源关系
得到自由空间格林函数后便可得到自由空间中的场源关系,其借助格林函数,将电场和磁场直接由电流源和磁流源表达
根据自由空间标量格林函数,自由空间中电流源和磁流源产生的矢量位为 \[\begin{aligned} \vec{A}(\vec{r})&=\frac{\mu}{4\pi}\iiint_V\vec{J}(\vec{r'})\frac{e^{-jk|\vec{r}-\vec{r'}|}}{|\vec{r}-\vec{r'}|}dV' \\[8pt] \vec{F}(\vec{r})&=\frac{\epsilon}{4\pi}\iiint_V\vec{M}(\vec{r'})\frac{e^{-jk|\vec{r}-\vec{r'}|}}{|\vec{r}-\vec{r'}|}dV' \end{aligned} \]
当\(\omega\rightarrow0\)时,退化为静电场和静磁场的情况,即 \[\begin{aligned} \vec{A}(\vec{r})&=\frac{\mu}{4\pi}\iiint_V\frac{\vec{J}(\vec{r'})}{|\vec{r}-\vec{r'}|}dV' \\[8pt] \vec{F}(\vec{r})&=\frac{\epsilon}{4\pi}\iiint_V\frac{\vec{M}(\vec{r'})}{|\vec{r}-\vec{r'}|}dV' \end{aligned} \]
上式实质为卷积运算,由傅里叶逆变换可得矢量位的时域表达式 \[\begin{aligned} \vec{A}(\vec{r},t)&=\frac{\mu}{4\pi}\iiint_V\frac{\vec{J}(\vec{r'},t-R/c)}{|\vec{r}-\vec{r'}|}dV' \\[8pt] \vec{F}(\vec{r},t)&=\frac{\epsilon}{4\pi}\iiint_V\frac{\vec{M}(\vec{r'}-R/c)}{|\vec{r}-\vec{r'}|}dV' \end{aligned} \]
其中光速\(c=\frac{1}{\sqrt{\mu\epsilon}}\). 矢量位的时域表达式含时域上的滞后位,
在电动力学中即为推迟势的概念. 推迟势满足非齐次的电磁波方程和洛伦兹规范,其物理含义为由于光速有限,电磁波传播至观察者位置的时间要比电磁波发射的时间滞后,这是具有实际物理意义的. 当\(G_0(\vec{r},0)=-C\frac{e^{-jkr}}{r}\)时,所得矢量位为超前势,即此刻观察者观测到的电磁波是由未来时刻的电流源和磁流源产生的,它违反了因果律,不具有实际物理意义;实际上,这种情况下的标量格林函数表示由无穷远处向源点传播的波,这是不具有物理意义的
得到矢量位的时域表达式后,即可求得总场的时域表达式,将其代入上式即可 \[\begin{aligned} \vec{E}(\vec{r},t)&=-\frac{\partial\vec{A}(\vec{r},t)}{\partial t}++\frac{1}{\mu\epsilon}\int_0^{t-R/c}\nabla[\nabla\cdot\vec{A}(\vec{r},t)]d\tau-\frac{1}{\epsilon}\nabla\times\vec{F}(\vec{r},t) \\[8pt] \vec{H}(\vec{r},t)&=\frac{1}{\mu}\nabla\times\vec{A}(\vec{r},t)-\frac{\partial\vec{F}(\vec{r},t)}{\partial t}+\frac{1}{\mu\epsilon}\int_0^{t-R/c}\nabla[\nabla\cdot\vec{F}(\vec{r},t)]d\tau \end{aligned} \]
辅助位函数的物理意义
对时谐场的麦克斯韦方程两端取旋度,可得 \[\begin{aligned} \nabla^2\vec{E}+k^2\vec{E}&=j\omega\mu\vec{J}-\frac{1}{j\omega\epsilon}\nabla(\nabla\cdot\vec{J})+\nabla\times\vec{M} \\[8pt] \nabla^2\vec{H}+k^2\vec{H}&=j\omega\epsilon\vec{M}-\frac{1}{j\omega\mu}\nabla(\nabla\cdot\vec{M})-\nabla\times\vec{J} \end{aligned} \]
该方程为达朗贝尔方程,根据格林函数可直接写出该方程的解,为 \[ \begin{aligned} \vec{E}(\vec{r})&=-\frac{1}{4\pi}\iiint_V\{j\omega\mu\vec{J}(\vec{r'})-\frac{1}{j\omega\epsilon}\nabla'(\nabla'\cdot\vec{J}(\vec{r'}))+\nabla'\times\vec{M}(\vec{r'})\}\frac{e^{-jkR}}{R}dV' \\[8pt] \vec{H}(\vec{r})&=-\frac{1}{4\pi}\iiint_V\{j\omega\epsilon\vec{M}(\vec{r'})-\frac{1}{j\omega\mu}\nabla'(\nabla'\cdot\vec{M}(\vec{r'}))-\nabla'\times\vec{J}(\vec{r'})\}\frac{e^{-jkR}}{R}dV' \end{aligned} \]
此方法为直接法,即直接由源的分布求得总场,不借助矢量位函数
矢量位函数法为先由源的分布求得空间中矢量位,再由矢量位求得总场,即 \[\begin{cases} \vec{A}(\vec{r})&=\frac{\mu}{4\pi}\iiint_V\vec{J}(\vec{r'})\frac{e^{-jk|\vec{r}-\vec{r'}|}}{|\vec{r}-\vec{r'}|}dV' \\[8pt] \vec{F}(\vec{r})&=\frac{\epsilon}{4\pi}\iiint_V\vec{M}(\vec{r'})\frac{e^{-jk|\vec{r}-\vec{r'}|}}{|\vec{r}-\vec{r'}|}dV' \end{cases} \Rightarrow \begin{cases} \vec{E}&=-j\omega\vec{A}+\frac{1}{j\omega\mu\epsilon}\nabla(\nabla\cdot\vec{A})-\frac{1}{\epsilon}\nabla\times\vec{F} \\[8pt] \vec{H}&=\frac{1}{\mu}\nabla\times\vec{A}-j\omega\vec{F}+\frac{1}{j\omega\mu\epsilon}\nabla(\nabla\cdot\vec{F}) \end{cases} \]
矢量位函数为\(\vec{r}\)的解析函数,而源不一定连续,这会导致直接法中的导数不成立,除非引入\(\delta\)函数计算,而矢量位函数法则可放宽对源形式的要求
并矢
在介绍自由空间并矢格林函数函数前需引入并矢的概念
并矢是一种数学上的标记形式,由两个矢量直接并列表示,其不具有实际物理意义,只有当并矢和另一个矢量运算时才有意义. 将其记为\(\bar{D}\),则 \[\bar{D}=\vec{A}\vec{B}\]
并矢\(\bar{D}\)和矢量\(\vec{C}\)的左点乘为 \[\vec{C}\cdot\bar{D}=(\vec{C}\cdot\vec{A})\vec{B}\]
并矢\(\bar{D}\)和矢量\(\vec{C}\)的右点乘为 \[\bar{D}\cdot\vec{C}=\vec{A}(\vec{B}\cdot\vec{C})\]
并矢\(\bar{D}\)和矢量\(\vec{C}\)的左叉乘为 \[\vec{C}\times\bar{D}=(\vec{C}\times\vec{A})\vec{B}\]
并矢\(\bar{D}\)和矢量\(\vec{C}\)的右叉乘为 \[\bar{D}\times\vec{C}=\vec{A}(\vec{B}\times\vec{C})\]
由此可见,并矢通过点乘可改变一个矢量的幅度和方向,而矢量和并矢叉乘的结果为新的并矢
而张量(Tensor)是一个更广义的并矢,其定义为(该张量包含九个独立分量) \[ \begin{aligned} \bar{D}&=\vec{D}_x\hat{x}+\vec{D}_y\hat{y}+\vec{D}_z\hat{z} \\[8pt] &=\sum_{i,j=x,y,z}D_{ij}\hat{i}\hat{j} \end{aligned}\]
单位并矢\(\bar{I}\)满足 \[\vec{C}\cdot\bar{I}=\bar{I}\cdot\vec{C}=\vec{C}\]
自由空间并矢格林函数
将由格林函数表示的矢量位\(\vec{A}\)和\(\vec{F}\)代入\(\vec{E}=-j\omega\vec{A}+\frac{1}{j\omega\mu\epsilon}\nabla(\nabla\cdot\vec{A})-\frac{1}{\epsilon}\nabla\times\vec{F}\)可得 \[\begin{aligned} \vec{E}(\vec{r})=&-j\omega\mu\iiint_V[G_0(\vec{r},\vec{r'})\vec{J}(\vec{r'})+\frac{1}{k^2}\nabla\nabla G_0(\vec{r},\vec{r'})\cdot\vec{J}(\vec{r'})]dV' \\[8pt] &-\iiint_V\nabla G_0(\vec{r},\vec{r'})\times\vec{M}(\vec{r'})dV' \end{aligned} \]
注意到\(\iiint_VG_0(\vec{r},\vec{r'})\vec{J}(\vec{r'})dV'\)为电流辐射,\(\iiint_V\frac{1}{k^2}\nabla\nabla G_0(\vec{r},\vec{r'})\cdot\vec{J}(\vec{r'})]dV'\)为电荷辐射
引入单位并矢\(\bar{I}\) \[\bar{I}=\hat{x}\hat{x}+\hat{y}\hat{y}+\hat{z}\hat{z}\]
易证 \[\vec{J}(\vec{r'})=\bar{I}\cdot\vec{J}(\vec{r'}) \\[8pt] \nabla G_0(\vec{r},\vec{r'})\times\vec{M}(\vec{r'})=[\nabla G_0(\vec{r},\vec{r'})\times\bar{I}]\cdot\vec{M}(\vec{r'})\]
代入电场表达式可得 \[\begin{aligned} \vec{E}(\vec{r})=&-j\omega\mu\iiint_V[(\bar{I}+\frac{1}{k^2}\nabla\nabla)G_0(\vec{r},\vec{r'})]\cdot\vec{J}(\vec{r'})dV' \\[8pt] &-\iiint_V[\nabla G_0(\vec{r},\vec{r'})\times\bar{I}]\cdot\vec{M}(\vec{r'})dV' \end{aligned} \]
定义电并矢格林函数和磁并矢格林函数 \[\begin{aligned} \bar{G}_{eo}(\vec{r}.\vec{r'})&=(\bar{I}+\frac{1}{k^2}\nabla\nabla)G_0(\vec{r},\vec{r'}) \\[8pt] \hat{G}_{mo}(\vec{r},\vec{r'})&=\nabla G_0(\vec{r},\vec{r'})\times\bar{I} \end{aligned} \]
注意,\(\nabla\nabla G_0(\vec{r},\vec{r'})\)表示对\(G_0(\vec{r},\vec{r'})\)求梯度后对每个分量再次求导,其结果为张量
基于电并矢格林函数和磁并矢格林函数,可将电场和磁场表达式简写为 \[\begin{aligned} \vec{E}(\vec{r})&=-j\omega\mu\iiint_V\bar{G}_{eo}(\vec{r}.\vec{r'})\cdot\vec{J}(\vec{r'})dV'-\iiint_V\bar{G}_{mo}(\vec{r}.\vec{r'})\cdot\vec{M}(\vec{r'})dV' \\[8pt] \vec{H}(\vec{r})&=\iiint_V\bar{G}_{mo}(\vec{r}.\vec{r'})\cdot\vec{J}(\vec{r'})dV'-j\omega\epsilon\iiint_V\bar{G}_{eo}(\vec{r}.\vec{r'})\cdot\vec{M}(\vec{r'})dV' \end{aligned} \]
若将\(\bar{G}_{eo}(\vec{r}.\vec{r'})\)和\(\bar{G}_{mo}(\vec{r}.\vec{r'})\)表示为并矢形式 \[\begin{aligned} \bar{G}_{eo}(\vec{r}.\vec{r'})&=\vec{G}_{eo,x}(\vec{r},\vec{r'})\hat{x}+\vec{G}_{eo,y}(\vec{r},\vec{r'})\hat{y}+\vec{G}_{eo,z}(\vec{r},\vec{r'})\hat{z} \\[8pt] \bar{G}_{mo}(\vec{r}.\vec{r'})&=\vec{G}_{mo,x}(\vec{r},\vec{r'})\hat{x}+\vec{G}_{mo,y}(\vec{r},\vec{r'})\hat{y}+\vec{G}_{mo,z}(\vec{r},\vec{r'})\hat{z} \end{aligned} \]
将并矢形式的\(\bar{G}_{eo}(\vec{r}.\vec{r'})\)和\(\bar{G}_{mo}(\vec{r}.\vec{r'})\)代入电场和磁场表达式,可以看出:
- \(\vec{G}_{eo,i}(\vec{r},\vec{r'})\)表示由位于\(\vec{r'}\)处的\(\hat{i}\)方向无限小电流源在\(\vec{r}\)处产生的电场
- \(\vec{G}_{mo,i}(\vec{r},\vec{r'})\)表示由位于\(\vec{r'}\)处的\(\hat{i}\)方向无限小磁流源在\(\vec{r}\)处产生的电场
- \(\vec{G}_{eo,i}(\vec{r},\vec{r'})\)表示由位于\(\vec{r'}\)处的\(\hat{i}\)方向无限小磁流源在\(\vec{r}\)处产生的磁场
- \(\vec{G}_{mo,i}(\vec{r},\vec{r'})\)表示由位于\(\vec{r'}\)处的\(\hat{i}\)方向无限小电流源在\(\vec{r}\)处产生的磁场
当只有电流源(\(\vec{M}=0\))时,将下式代入Maxwell's equations中 \[\begin{aligned} \vec{E}(\vec{r})&=-j\omega\mu\iiint_V\bar{G}_{eo}(\vec{r}.\vec{r'})\cdot\vec{J}(\vec{r'})dV' \\[8pt] \vec{H}(\vec{r})&=\iiint_V\bar{G}_{mo}(\vec{r}.\vec{r'})\cdot\vec{J}(\vec{r'})dV' \end{aligned} \]
可得 \[\begin{aligned} \nabla\times\bar{G}_{eo}(\vec{r},\vec{r'})&=\bar{G}_{mo}(\vec{r},\vec{r'}) \\[8pt] \nabla\times\bar{G}_{eo}(\vec{r},\vec{r'})&=k^2\bar{G}_{mo}(\vec{r},\vec{r'})+\bar{I}\delta(\vec{r}-\vec{r'}) \\[8pt] \nabla\cdot\bar{G}_{eo}(\vec{r},\vec{r'})&=-\frac{1}{k^2}\nabla\delta(\vec{r}-\vec{r'}) \\[8pt] \nabla\cdot\bar{G}_{mo}(\vec{r},\vec{r'})&=0 \end{aligned} \]
以上四个方程与Maxwell's equations中的四个方程一一对应,其在自由空间中适用(这是自由空间格林函数\(G_0(\vec{r},\vec{r'})\)的限制),这是一个十分优美的结论
结束
写到中间才发现这次的内容这么多,很大部分是格林函数和复杂的电磁场表达式所导致的
笔者在学习此部分时常常一头雾水,不清楚为何要对矢量位做如此复杂的分析,况且短时间内学习并吸收如此繁冗的公式也是一大挑战. 学到后面章节时才发现,矢量位是解决不少问题的便捷途径,这是因为矢量位只由源的分布决定,在已知空间格林函数的条件下可以解析地求得矢量位的空间分布,又总场可由矢量位唯一确定(见矢量位和标量位-时谐场章节),故可得到总场的解析表达式,这条分析路径既清晰又解析
下一篇文章将借助几个案例,利用矢量位计算自由空间辐射问题,这将初步展现矢量位工具的优势
pixiv ID:91336094 (补充3baka能量)